skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koch, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 27, 2025
  2. The Cloud Radio Access Network (CRAN) architecture has been proposed as a way of addressing the network throughput and scalability challenges of large-scale LoRa networks. CRANs can improve network throughput by coherently combining signals, and scale to multiple channels by implementing the receivers in the cloud. However, in remote LoRa deployments, a CRAN's demand for high-backhaul bandwidths can be challenging to meet. Therefore, bandwidth-aware compression of LoRa samples is needed to reap the benefits of CRANs. We introduce Cloud-LoRa, the first practical CRAN for LoRa, that can detect sub-noise LoRa signals and perform bandwidth-adaptive compression. To the best of our knowledge, this is the first demonstration of CRAN for LoRa operating in real-time. We deploy Cloud-LoRa in an agricultural field over multiple days with USRP as the gateway. A cellular backhaul hotspot is then used to stream the compressed samples to a Microsoft Azure server. We demonstrate SNR gains of over 6 dB using joint multi-gateway decoding and over 2x throughput improvement using state-of-the-art receivers, enabled by CRAN in real-world deployments. 
    more » « less
  3. The Cloud Radio Access Network (CRAN) architecture has been proposed as a way of addressing the network throughput and scalability challenges of large-scale LoRa networks. CRANs can improve network throughput by coherently combining signals, and scale to multiple channels by implementing the receivers in the cloud. However, in remote LoRa deployments, a CRAN’s demand for high-backhaul bandwidths can be challenging to meet. Therefore, bandwidth-aware compression of LoRa samples is needed to reap the benefits of CRANs. We introduce Cloud-LoRa, the first practical CRAN for LoRa, that can detect sub-noise LoRa signals and perform bandwidth-adaptive compression. To the best of our knowledge, this is the first demonstration of CRAN for LoRa operating in real-time. We deploy Cloud-LoRa in an agricultural field over multiple days with USRP as the gateway. A cellular backhaul hotspot is then used to stream the compressed samples to a Microsoft Azure server. We demonstrate SNR gains of over 6 dB using joint multi-gateway decoding and over 2x throughput improvement using state-of-the-art receivers, enabled by CRAN in real-world deployments. 
    more » « less